Fisher Tensor Decomposition for Unconstrained Gait Recognition

نویسندگان

  • Wenjuan Gong
  • Michael Sapienza
  • Fabio Cuzzolin
چکیده

This paper proposes a simplified Tucker decomposition of a tensor model for gait recognition from dense local spatiotemporal (S/T) features extracted from gait video sequences. Unlike silhouettes, local S/T features have displayed state-of-art performances on challenging action recognition testbeds, and have the potential to push gait ID towards real-world deployment. We adopt a Fisher representation of S/T features, rearranged as tensors. These tensors still contain redundant information, and are projected onto a lower dimensional space with tensor decomposition. The dimensions of the reduced tensor space can be automatically selected by keeping a proportion of the energy of the original tensor. Gait features can then be extracted from the reduced “core” tensor, and ranked according to how relevant each feature is for classification. We validate our method on the benchmark USF/INIST gait data set, showing performances in line with the best reported results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Learning Based Gait Feature Reduction and Recognition

The moving objectives’ images are in tensor format in reality. That using for reference the thought of tensor space dimension reduction to gain the optimal gait characters with low dimension inaugurate a new gait recognition way. A novel gait expression and recognition algorithm based on the tensor space is introduced here. It is a tensor space learning algorithm that could investigate the inhe...

متن کامل

Multilinear Tensor-Based Non-parametric Dimension Reduction for Gait Recognition

The small sample size problem and the difficulty in determining the optimal reduced dimension limit the application of subspace learning methods in the gait recognition domain. To address the two issues, we propose a novel algorithm named multi-linear tensor-based learning without tuning parameters (MTP) for gait recognition. In MTP, we first employ a new method for automatic selection of the o...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

A sparse and discriminative tensor to vector projection for human gait feature representation

In this paper, we introduce an efficient tensor to vector projection algorithm for human gait feature representation and recognition. The proposed approach is based on the multidimensional or tensor signal processing technology, which finds a low-dimensional tensor subspace of original input gait sequence tensors while most of the data variation has been well captured. In order to further enhan...

متن کامل

Probability Density Functions from the Fisher Information Metric

We show a general relation between the spatially disjoint product of probability density functions and the sum of their Fisher information metric tensors. We then utilise this result to give a method for constructing the probability density functions for an arbitrary Riemannian Fisher information metric tensor. We note further that this construction is extremely unconstrained, depending only on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013